Fingolimod (FTY720-P) Does Not Stabilize the Blood–Brain Barrier under Inflammatory Conditions in an in Vitro Model
نویسندگان
چکیده
Breakdown of the blood-brain barrier (BBB) is an early hallmark of multiple sclerosis (MS), a progressive inflammatory disease of the central nervous system. Cell adhesion in the BBB is modulated by sphingosine-1-phosphate (S1P), a signaling protein, via S1P receptors (S1P₁). Fingolimod phosphate (FTY720-P) a functional S1P₁ antagonist has been shown to improve the relapse rate in relapsing-remitting MS by preventing the egress of lymphocytes from lymph nodes. However, its role in modulating BBB permeability-in particular, on the tight junction proteins occludin, claudin 5 and ZO-1-has not been well elucidated to date. In the present study, FTY720-P did not change the transendothelial electrical resistance in a rat brain microvascular endothelial cell (RBMEC) culture exposed to inflammatory conditions and thus did not decrease endothelial barrier permeability. In contrast, occludin was reduced in RBMEC culture after adding FTY720-P. Additionally, FTY720-P did not alter the amount of endothelial matrix metalloproteinase (MMP)-9 and MMP-2 in RBMEC cultures. Taken together, our observations support the assumption that S1P₁ plays a dual role in vascular permeability, depending on its ligand. Thus, S1P₁ provides a mechanistic basis for FTY720-P-associated disruption of endothelial barriers-such as the blood-retinal barrier-which might result in macular edema.
منابع مشابه
P27: KCNK2 and Adhesion Molecules in an in-Vitro Blood Brain Barrier Model
Two-pore domain potassium channels, like KCNK2, are known to play an important role in inflammatory diseases such as multiple sclerosis (MS). Upregulation of cellular adhesion molecules in mouse brain microvascular endothelial cells (MBMECs) of Kcnk2-/- mice resulted in elevated leukocyte trafficking into the central nervous system under inflammatory conditions. The current project aims to gain...
متن کاملPreclinical Metabolism, Pharmacokinetics and In Vivo Analysis of New Blood-Brain-Barrier Penetrant Fingolimod Analogues: FTY720-C2 and FTY720-Mitoxy
Parkinson's disease (PD) is a neurodegenerative aging disorder in which postmortem PD brain exhibits neuroinflammation, as well as synucleinopathy-associated protein phosphatase 2A (PP2A) enzymatic activity loss. Based on our translational research, we began evaluating the PD-repurposing-potential of an anti-inflammatory, neuroprotective, and PP2A stimulatory oral drug that is FDA-approved for ...
متن کاملRoles for lysophospholipid S1P receptors in multiple sclerosis.
Sphingosine 1-phosphate (S1P) signaling in the treatment of multiple sclerosis (MS) has been highlighted by the efficacy of FTY720 (fingolimod), which upon phosphorylation can modulate S1P receptor activities. FTY720 has become the first oral treatment for relapsing MS that was approved by the FDA in September 2010. Phosphorylated FTY720 modulates four of the five known S1P receptors (S1P(1), S...
متن کاملFingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices.
Remyelination, which occurs subsequent to demyelination, contributes to functional recovery and is mediated by oligodendrocyte progenitor cells (OPCs) that have differentiated into myelinating cells. Therapeutics that impact remyelination in the CNS could be critical determinants of long-term functional outcome in multiple sclerosis (MS). Fingolimod is a S1P receptor modulator in MS clinical tr...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2015